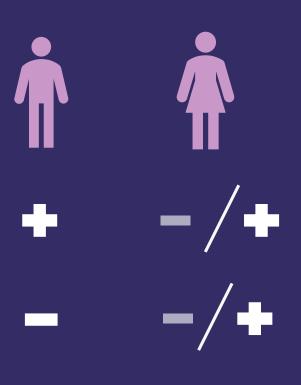
Adoption of industrial robots and fertility

Anna Matysiak

University of Warsaw



*່*ເທີ LabFam

Labour force participation (LFP) and fertility

- source of income
- opportunity costs / work-family conflict
- social context: family policies, social norms

Employment / income Unemployment Temporary employment Employment uncertainty

_້ທ່ LabFam

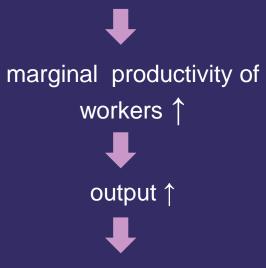
• Labour augmenting / displacing effects?

Our 1000-Year Struggle Over Technology & Prosperity

DARON ACEMOGLU

SIMON JOHNSON Co-author of 13 BANKERS

- Technological innovations facilitate development but may lead to substantial social inequalities
- Labour augmenting or displacing
 - Marginal productivity of workers
 - Institutions



Labour augmenting effects

Labour augmenting

effects

complementing human labour

labour demand & wages \uparrow

iii LabFam

Electric assembly line

 Reduction in production time and costs

• Production tripled

 Larger demand for lower skilled workers

 Working hours declined from 9 to 8 hours

Wages doubled

Better working condings (safety and health)

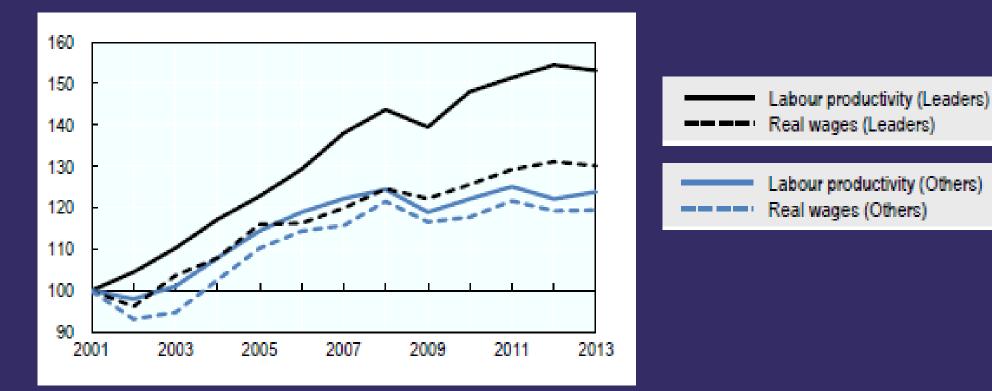
• Expansion of trade unions

Labour displacing effects?


Labour displacing

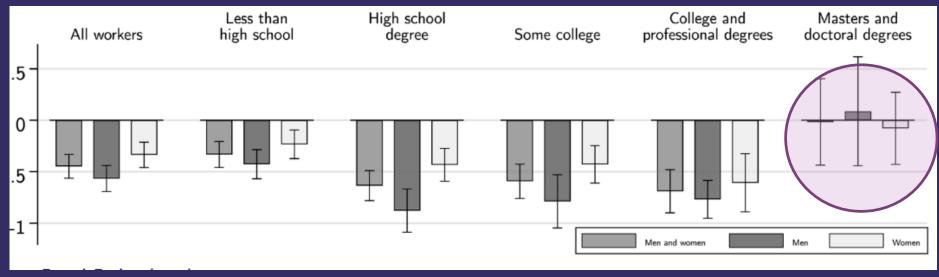
effects

Certain job and work tasks get replaced by machines


production costs ↓ average productivity ↑ marginal productivity of workers ↓

Output? Labour demand? Wages?

Wages have decoupled from productivity in technologically advanced firms...

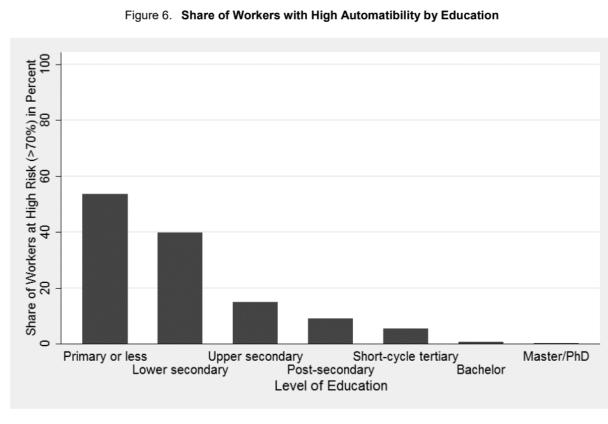


Countries: Belgium, Denmark, Germany, Ireland, Japan, Korea, Sweden, UK, US

Source: OECD Employment Outlook 2018

Automation and employment

• US: 1 robot / 1000 workers reduces the employment rate by 0.2 pp. and wages by about 0.42% (Acemoglu and Restrepo 2020)



Source: Acemoglu and Restrepo 2020

• Europe: null overall effect, but negative effects on employment of low and middle educated workers (Graetz and Michaels 2018)

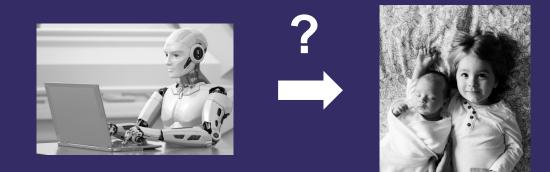
Automation and employment

- 9-14% of jobs at high risk of full automation (more than 70% of tasks automatable)
- 25-32% jobs at medium risk (50-70% of tasks automatable)

Source: Authors' calculation based on the Survey of Adult Skills (PIAAC) (2012)

_່ທ່ LabFam

Source: Arntz et al. (2017), Nedelkoska and Quinitini (2018)



- Labour augmenting / displacing effects
- Changing structure of the labour demand / growing disparities between high and low-to-middle skilled
- Effects on wages, employability, stability and certainty of employment
- Structural LM change (not cyclical!)

Past research

Anelli et al. (2021):

- regional study (commuting zones in the US)
- adoption of industrial robots → more cohabitation and divorce, decline in marital fertility, increase in non-marital fertility

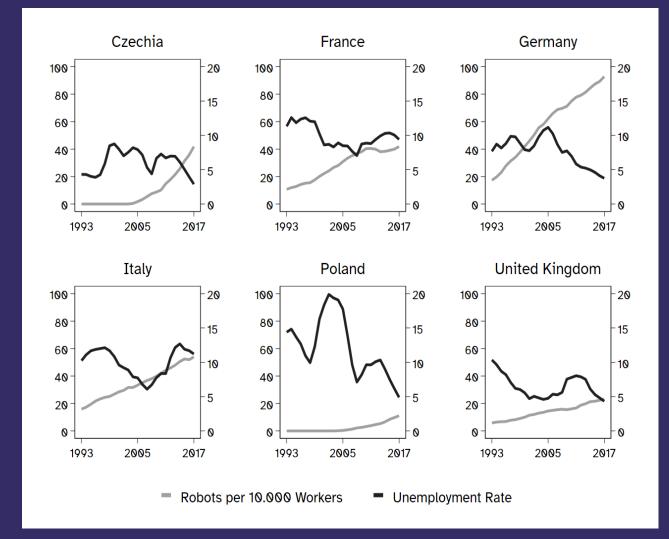
MACRO-LEVEL STUDY

Co-authors: D. Bellani & H. Bogusz Countries: DE, IT, FR, UK, PL & CZ Period: 1993-2017

MICRO-LEVEL STUDY

Co-authors: L. Andersson, W. Hardy

Countries: Sweden


Period: 1993-2017

MACRO-LEVEL STUDY

Co-authors: D. Bellani & H. Bogusz Countries: DE, IT, FR, UK, PL & CZ Period: 1993-2017

Fertility effects of automation less pronounced in regions with:
H1: better educated populations
H2: more technologically advanced

MACRO LEVEL STUDY: Data (1993-2017)

EUROSTAT:

- Regional NUTS-2 fertility rates (total and age-specific)
- Regional employment structures by industry (NACE 2-digit)

INTERNATIONAL FEDERATION OF ROBOTICS (IFR)

• Robot stocks (country and industry-specific) at 3-digit since 1993

fully autonomous machines that do not require a human operator

MACRO LEVEL STUDY: Measurement

$$Exposure \ to \ robots_{r,t} = \sum_{i=1}^{N} \boxed{\frac{empl_{r,i,t_0}}{empl_{r,t_0}}} (\frac{robots_{i,t}}{empl_{i,t_0}})$$

distribution of intitial employment at t0 across regions replacement of initial employment (at t0) in industry i by robots

iii LabFam

Source: Acemoglu and Restrepo (2020)

MACRO LEVEL STUDY: Modelling

 $fertility_{r,t} = \alpha \cdot Exposure \ to \ robots_{r,t-2} +$

$+\beta \cdot Controls_{r,t-1} + \eta_r + \nu_t + \varepsilon_{r,t}$

Controls:

- population age structure
- % highly educated
- ratio highly educated women to men
- women's economic activity rate

Year fixed effects

Regional fixed effects

MACRO LEVEL STUDY: Modelling

 $fertility_{r,t} = \alpha \left(Exposure to robots_{r,t-2} \right) +$

 $\sum = \frac{empl_{r,i,t_0}}{empl} (robots_{i,t_0}^C)$

 $+\beta \cdot Controls_{r,t-1} + \eta_r + \nu_t + \varepsilon_{r,t}$

Overidentified IV model:

- Robot stocks instrumented with robots in {Germany, France, UK, Italy, Spain, Sweden, Norway and Finland} excluding the studied country
- In models for Czechia and Poland we additionally use US as an intstrument

MACRO LEVEL STUDY: Modelling

 $fertility_{r,t} = \alpha \left\{ Exposure \ to \ robots_{r,t-2} + x \ Moderator_{r,t-1} \right\}$

 $+\beta \cdot Controls_{r,t-1} + \eta_r + \nu_t + \varepsilon_{r,t}$

Fertility effects less pronounced if:

H1: better educated populations

H2: region more technologically advanced

Moderators:

% highly educated % empl in techn and knowledge sector

_່ທໍ່ LabFam

MACRO-LEVEL STUDY: Results

Country	TFR	FR 20-24	FR 25-29	FR 30-34	FR 35-39	FR 40-44	FR 45+
Germany	ns	ns	ns	ns	-0.00011***	-0.00005***	ns
France	ns	ns	ns	ns	ns	ns	ns
Italy	-0.00118*	ns	-0.00090***	ns	ns	ns	ns
UK	ns	ns	ns	ns	ns	0.00039*	ns
Czechia & Poland	ns	ns	ns	ns	0.00025*	ns	ns

*** 1% ** 5% * 10%. Sample sizes: 680 observations for Germany, 440 for France, 400 for Italy, 700 for the UK, and 240 for Poland and Czechia jointly.

_້ທີ່ LabFam

MACRO-LEVEL STUDY: Results # % highly educated

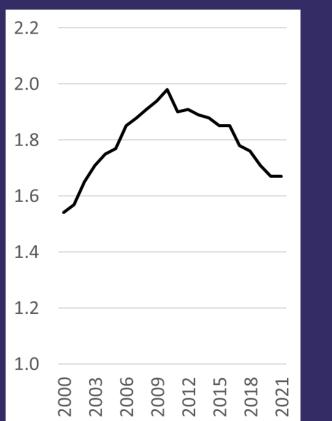
Country	TFR main effect	TFR interaction effect
Germany	-0.0016***	0.00005***
France	0.0015**	-0.00058**
Italy	-0.00292*	0.0001
UK	ns	ns
Czechia & Poland	ns	ns

*** 1% ** 5% * 10%. Sample sizes: 680 observations for Germany, 440 for France, 400 for Italy, 700 for the UK, and 240 for Poland and Czechia jointly.

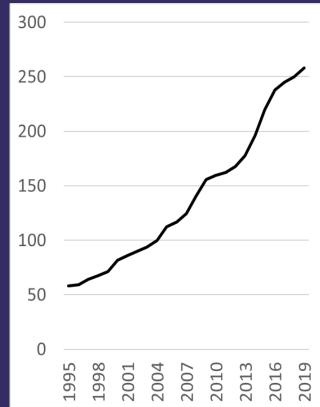
MACRO-LEVEL STUDY: Results # empl in technology and knowledge sectors

Country	TFR main effect	TFR interaction effect
Germany	ns	ns
France	ns	ns
Italy	-0.00116*	0.000005
UK	ns	ns
Czechia & Poland	ns	ns

*** 1% ** 5% * 10%. Sample sizes: 680 observations for Germany, 440 for France, 400 for Italy, 700 for the UK, and 240 for Poland and Czechia jointly.


MICRO-LEVEL STUDY

Co-authors: L. Andersson, W. Hardy Countries: Sweden Period: 1993-2017



Total fertility rate

Robot density

Number of inustrial robots per 10,000 workers in manufacturing

_້ທ່ LabFam

MICRO-LEVEL STUDY: Data and Method

Data:

- Swedish register data
- IFR robot stocks (industry-specific) at 3 digit since 1993

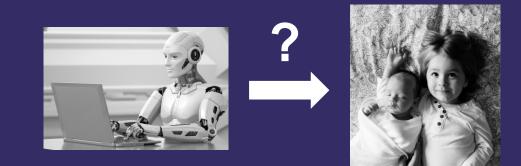
Period: 1993-2017

Method:

• Event history models

Events:

- Marriage
- 1st, 2nd, 3rd birth
- Divorce


MICRO-LEVEL STUDY: Data and Method

Measure:

• Exposure to robots

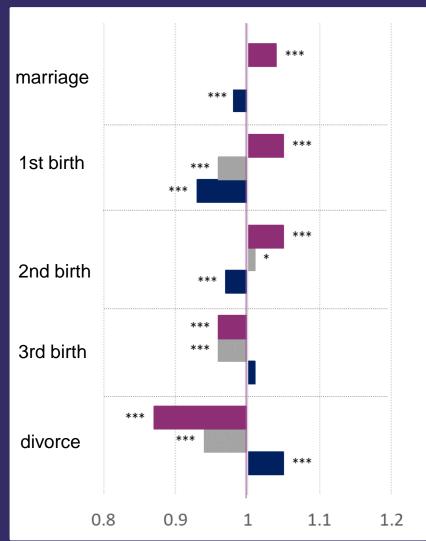
Exposure to robots
$$_{i,t} = \frac{robots_{i,t}}{empl_{i,t_0}}$$

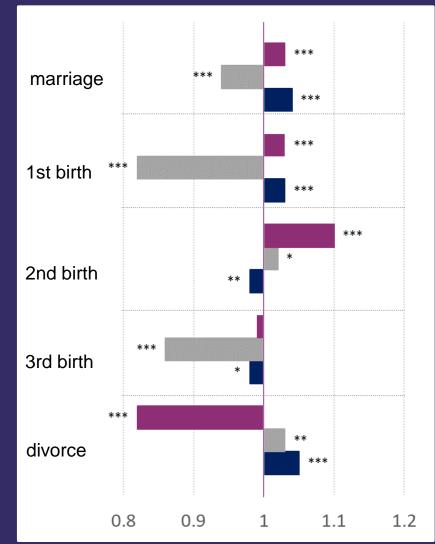
IV: Using stock of robots in other countries which are similarly (Finland, Denmark)

Controls:

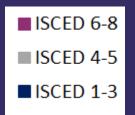
- Age
- (Age of the previous child)
- Calendar year
- Education
- Employment status (works in a sector with / without robotisation, no work)
- Firm size
- Seniority status

wi LabFam


MICRO-LEVEL STUDY: Results

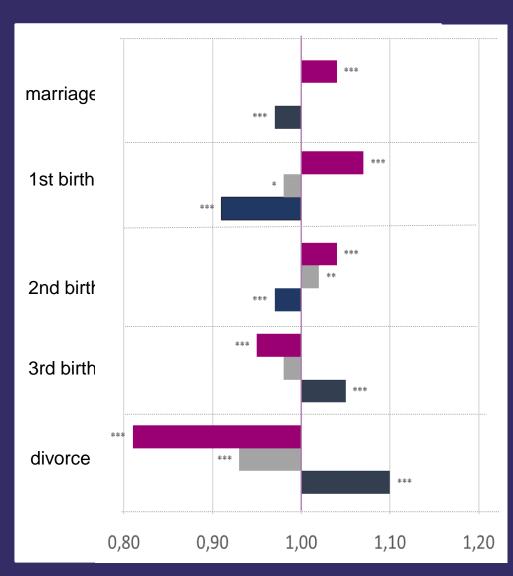


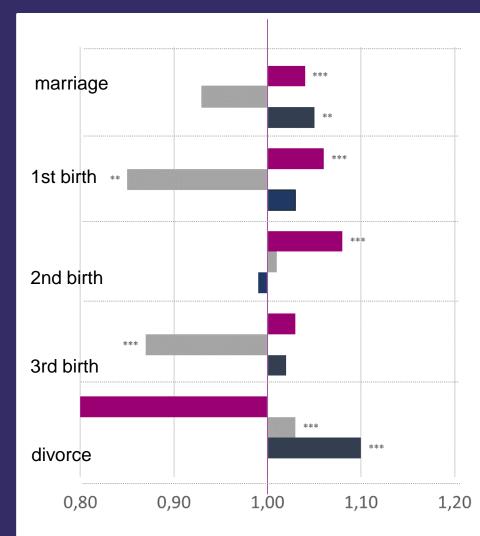
Note: A change in the risk of an event due to an increase in robot adoption in an industry by one standard deviation

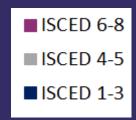

MICRO-LEVEL STUDY: Results

MEN

WOMEN

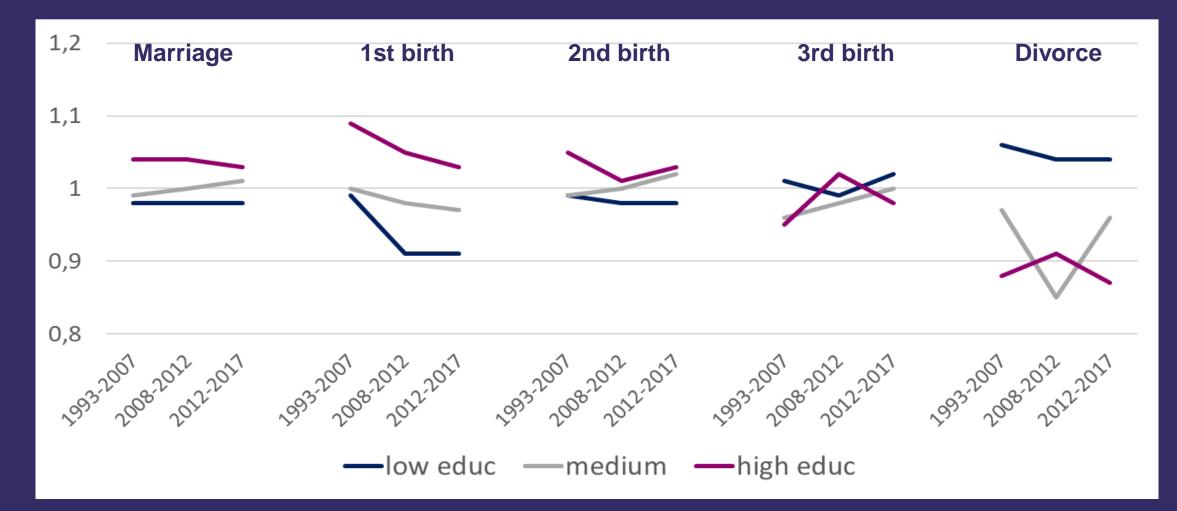



Note: A change in the risk of an event due to an increase in robot adoption in an industry by one standard deviation

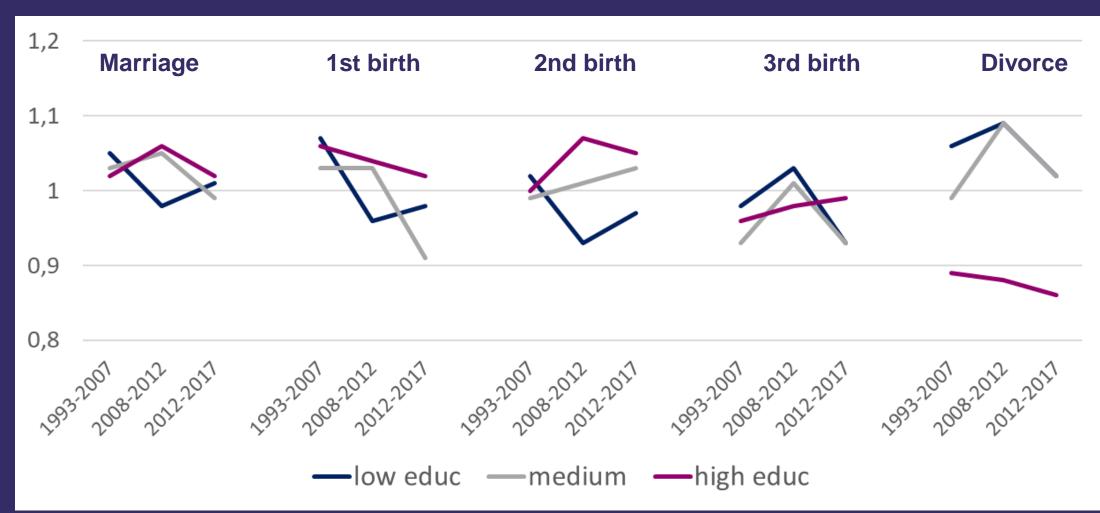

MICRO-LEVEL STUDY: IV Results

MEN

WOMEN



Note: A change in the risk of an event due to an increase in robot adoption in an industry by one standard deviation


MICRO-LEVEL STUDY: Results

Change in the risk of the event due to an increase in automation by 1 st dev., MEN

MICRO-LEVEL STUDY: Results

Change in the risk of the event due to an increase in automation by 1 st dev., WOMEN

Conclusions

- Rather weak overall effects of robot adoption on fertility / family formation and its stability
- Clear edu differences
 - Negative effects on fertility more pronounced in regions with lower educated populations
 - Negative efffects on family formation and stability among low educated workers and positive among highly educated workers (Sweden)
- No intensification of the negative effects of robot adoption over time

Outlook

 Does structural LM change / adoption of robots cause a reversal in educational gradient in fertility?

POLSKIE POWROTY POLISH RETURNS

Horizon 2020 European Union funding for Research & Innovation

European Research Council

University of Warsaw
Faculty of Economic Sciences

